- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Raj, Ayush (3)
-
Asadi, Amir (2)
-
Castaneda, Homero (2)
-
Albers, David (1)
-
Bozorgmehrian, Farshad (1)
-
Carrola, Mia (1)
-
Desai, Pooja M (1)
-
Fallahi, Hamed (1)
-
Kashyap, Aparajita (1)
-
Kaynan, Ozge (1)
-
Mamykina, Lena (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 25, 2026
-
Fallahi, Hamed; Raj, Ayush; Bozorgmehrian, Farshad; Castaneda, Homero; Asadi, Amir (, Springer Nature)
-
Kaynan, Ozge; Raj, Ayush; Carrola, Mia; Castaneda, Homero; Asadi, Amir (, American Society for Composites-DESTech publications)Carbon fiber-based structural lithium-ion batteries are attracting significant attention in the automotive and aerospace industries due to their dual capability of energy storage and mechanical load-bearing, leading to weight reduction. These batteries utilize lightweight carbon fiber (CF) composites, which offer excellent stiffness, strength-to-weight ratios, and electrical conductivity. Polyacrylonitrile-based CFs, comprising graphitic and amorphous carbon, are particularly suitable for Li-ion battery applications as they allow the storage of lithium ions. However, integrating lithium iron phosphate (LFP) into CFs poses challenges due to complex lab-scale processes and the use of toxic dispersants, hindering large-scale industrial compatibility. To address this, we investigate the development of water-based LFP-integrated CF structural Li-ion batteries. Homogeneous suspensions are created using cellulose nanocrystals (CNCs) to form hybrid structures. The battery system employs LFP-modified CF as the cathode, unsized CF as the anode, and a water-based electrolyte. The LFP-CNC-graphene nanoplatelet (GNP) hybrids are coated onto CFs through immersion coating. Scanning electron microscopy (SEM) images confirm the well-dispersed and well-adhered LFP-CNC-GNP structures on the CF surface, contributing to their mechanical interlocking and electrochemical performance. The batteries demonstrate a specific energy density of 62.67 Wh/kg and a specific capacity of 72.7 mAh/g. Furthermore, the cyclic voltammetry experiments reveal the stability of the LFP-CNC-GNP-coated CF batteries over 200 cycles without degradation. This research enables the engineering of hybrid nanostructured battery laminates using novel LFP-CNC-GNP-coated CFs, opening avenues for the development of innovative Li-ion structural batteries.more » « less
An official website of the United States government

Full Text Available